Jumat, 27 Juli 2012

MEKANISME KONTRAKSI OTOT



Mekanisme kerja otot pada dasarnya melibatkan suatu perubahan dalam keadaan yang relatif dari filamen-filamen aktin dan myosin. Selama kontraksi otot, filamen-filamen tipis aktin terikat pada dua garis yang bergerak ke Pita A, meskipun filamen tersebut tidak bertambah banyak.Namun, gerakan pergeseran itu mengakibatkan perubahan dalam penampilan sarkomer, yaitu penghapusan sebagian atau seluruhnya garis H. selain itu filamen myosin letaknya menjadi sangat dekat dengan garis-garis Z dan pita-pita A serta lebar sarkomer menjadi berkurang sehingga kontraksi terjadi. Kontraksi berlangsung pada interaksi antara aktin miosin untuk membentuk komplek aktin-miosin.
Suatu stimulus tunggal (yang menimbulkan potensial aksi) bila dikenakan pada suatu serabut otot, akan menghasilkan suatu kontraksi otot tunggal pada serabut otot tersebut. Bila potensial aksi kedua diberikan setelah otot mencapai relaksasi penuh, maka akan terjadi kontraksi tunggal kedua dengan kekuatan sama dengan kontraksi pertama. Namun bila potensial aksi kedua itu diberikan belum mencapai relaksasi penuh, maka akan terjadi kontraksi tambahan pada puncak kontraksi pertama kondisi ini dinamakan penjumlahan kontraksi. Bila suatu otot diberi stimulus dengan sangat cepat namun diantara dua stimuli masih ada sedikit relaksasi, maka akan terjadi tetanus tidak sempurna. Bila tidak ada kesempatan otot untuk relaksasi diantara dua stimuli, maka akan terjadi kontraksi dengan kekuatan maksimum yang disebut tetanus sempurna.

SLIDING FILAMENT THEORY

Dari hasil penelitian dan pengamatan dengan mikroskop elektron dan difraksi sinar X, Hansen dan Huxly (l955) mengemukkan teori kontraksi otot yang disebut model sliding filaments. Model ini menyatakan bahwa kontraksi didasarkan adanya dua set filamen di dalam sel otot kontraktil yang berupa filament aktin dan filamen miosin.. Rangsangan yang diterima oleh asetilkolin menyebabkan aktomiosin mengerut (kontraksi). Kontraksi ini memerlukan energi.
Pada waktu kontraksi, filamen aktin meluncur di antara miosin ke dalam zona H (zona H adalah bagian terang di antara 2 pita gelap). Dengan demikian serabut otot menjadi memendek yang tetap panjangnya ialah ban A (pita gelap), sedangkan ban I (pita terang) dan zona H bertambah pendek waktu kontraksi.
Ujung miosin dapat mengikat ATP dan menghidrolisisnya menjadi ADP. Beberapa energi dilepaskan dengan cara memotong pemindahan ATP ke miosin yang berubah bentuk ke konfigurasi energi tinggi. Miosin yang berenergi tinggi ini kemudian mengikatkan diri dengan kedudukan khusus pada aktin membentuk jembatan silang. Kemudian simpanan energi miosin dilepaskan, dan ujung miosin lalu beristirahat dengan energi rendah, pada saat inilah terjadi relaksasi. Relaksasi ini mengubah sudut perlekatan ujung myosin menjadi miosin ekor. Ikatan antara miosin energi rendah dan aktin terpecah ketika molekul baru ATP bergabung dengan ujung miosin. Kemudian siklus tadi berulang Iagi.
Mekanisme kerja otot pada dasarnya melibatkan suatu perubahan dalam keadaan yang relatif dari filamenfilamen aktin dan myosin. Selama kontraksi otot, filamen-filamen tipis aktin terikat pada dua garis yang bergerak ke Pita A, meskipun filamen tersebut tidak bertambah banyak.Namun, gerakan pergeseran itu mengakibatkan perubahan dalam penampilan sarkomer, yaitu penghapusan sebagian atau seluruhnya garis H. selain itu filamen myosin letaknya menjadi sangat dekat dengan garis-garis Z dan pita-pita A serta lebar sarkomer menjadi berkurang sehingga kontraksi terjadi. Kontraksi berlangsung pada interaksi antara aktin miosin untuk membentuk komplek aktin-miosin.

CROSS BRIDGE HYPHOTHESIS

Suatu filamen tebal tersusun atas molekul-molekul myosin yang merupakan suatu molekul besar seperti batang tipis (lebih kurang 200 nm) yang tersusun atas 2 spiral peptida yang saling berpilin. Setiap molekul myosin pada salah satu ujungnya memiliki 2 bulatan (kepala) yang panjangnya 20nm dan lebar 2nm bagian ini disebut jembatan silang (cross bridge) myosin yang menonjol keluar filamen tebal.
Hidrolisis ATP dapat dikaitkan dengan model pergeseran-filamen. Pada
mulanya, kita mengasumsikan jika cross-bridges miosin memiliki letak yang konstan tanpa berpindah-pindah, maka model ini tak dapat dibenarkan. Sebaliknya, cross-bridges itu harus berulangkali terputus dan terkait kembali pada posisi lain namun masih di daerah sepanjang filamen dengan arah menuju disk Z.
Melalui pengamatan dengan sinar X terhadap struktur filamen dan kondisinya saat proses hidrolisis terjadi, Rayment, Holden, dan Milligan mengeluarkan postulat bahwa tertutupnya celah aktin akibat rangsangan (berupa ejeksi ADP) itu berperan besar untuk sebuah perubahan konformasional (yang menghasilkan hentakan daya miosin) dalam siklus kontraksi otot. Postulat ini selanjutnya mengarah pada model “perahu dayung” untuk siklus kontraktil yang telah banyak diterima berbagai pihak. Pada mulanya, ATP muncul dan mengikatkan diri pada kepala miosin S1 sehingga celah aktin terbuka. Sebagai akibatnya, kepala S1 melepaskan ikatannya pada aktin. Pada tahap kedua, celah aktin akan menutup kembali bersamaan dengan proses hidrolisis ATP yang menyebabkan tegaknya posisi kepala S1. Posisi tegak itu merupakan keadaan molekul dengan energi tinggi (jelas-jelas memerlukan energi). Pada tahap ketiga, kepala S1 mengikatkan diri dengan lemah pada suatu monomer aktin yang posisinya lebih dekat dengan disk Z dibandingkan dengan monomer aktin sebelumnya. Pada tahap keempat, Kepala S1 melepaskan Pi yang mengakibatkan tertutupnya celah aktin sehingga afinitas kepala S1 terhadap aktin membesar. Keadaan itu disebut keadaan transien. Selanjutnya, pada tahap kelima, hentakan-daya terjadi dan suatu geseran konformasional yang turut menarik ekor kepala S1 tadi terjadi sepanjang 60 Angstrom menuju disk Z. Lalu, pada tahap akhir, ADP dilepaskan oleh kepala S1 dan siklus berlangsung lengkap.

PERANAN Ca­2+

Sejak tahun 1940, ion Kalsium diyakini turut berperan serta dalam pengaturan kontraksi otot. Kemudian, sebelum 1960, Setsuro Ebashi menunjukkan bahwa pengaruh Ca­2+  ditengahi oleh Troponin dan Tropomiosin. Ia menunjukkan aktomiosin yang diekstrak langsung dari otot (sehingga mengandung ikatan dengan troponin dan tropomiosin) berkontraksi karena ATP hanya jika Ca­2+ ada pula. Kehadiran troponin dan tropomiosin pada sistem aktomiosin tersebut meningkatkan sensitivitas sistem terhadap Ca­2+. Di samping itu, subunit dari troponin, TnC, merupakan satu-satunya komponen pengikat Ca­2+. Secara molekuler, proses kontraksi ini dapat dilihat dalam gambar  sebagai berikut:
Kontraksi otot halus tetap dipicu oleh Ca­2+ karena miosin rantai ringan kinase (=myosin light chain kinase / MLCK) secara enzimatik akan menjadi aktif hanya jika Ca­2+-kalmodulin hadir. Konsentrasi intraselular [Ca­2+] bergantung pada permeabilitas membran plasma sel otot halus terhadap Ca­2+. Permeabilitas otot halus tersebut dipengaruhi oleh sistem saraf involunter atau autonomik. Saat [Ca­2+] meningkat, kontraksi otot halus dimulai. Saat [Ca­2+menurun akibat pengaruh Ca­2+- ATPase dari membran plasma, MLCK kemudian dideaktivasi.

Tidak ada komentar:

Posting Komentar